

Protecting and improving the nation's health

Disinfectant use and antimicrobial resistance

Webinar – Promoting safer disinfectants in the global healthcare sector 23/04/2020

Dr Matthew Wand

Senior Project Team Leader Public Health England

matthew.wand@phe.gov.uk

Antibiotics are failing which places even greater pressure on disinfectants/biocides and hospital disinfection policy

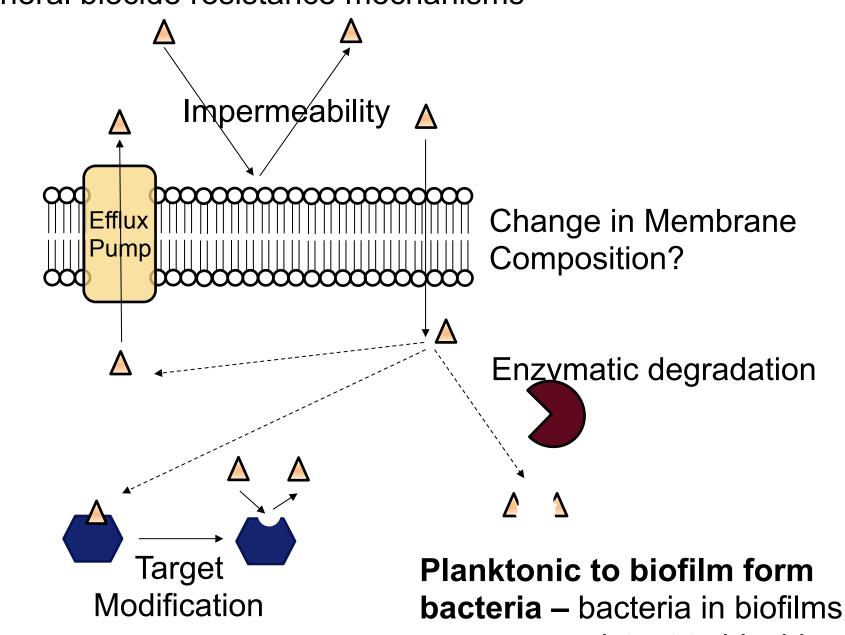
Prevention is better than cure

Classification of micro-organisms according to their resistance to biocides.

High Resistance

Prions (CJD, BSE)
Coccidia (*Crytosporidium* spp)
Bacterial endospores (*Bacillus* spp. *Clostridium difficile*)
Mycobacteria (*Mycobacterium tuberculosis, avium, terrae*)
Cysts (*Giardia, Taenia* spp)
Small non-enveloped viruses (Poliovirus)
Trophozoites (*Acanthamoeba* spp)
Gram-negative bacteria (*Pseudomonas* spp, *Escherichia coli*)
Fungi (including fungal spores) (*Aspergillus* spp, *Candida* spp)
Large non-enveloped viruses (Adenovirus)
Gram-positive bacteria (*Staphylococcus* spp, *Enterococcus* spp)
Large lipid enveloped viruses (HIV, HBV)

Low Resistance


Groups containing bacteria are highlighted in bold. Adapted from Maillard, 2002

Questions associated with biocide resistance

- 1) Why are we not seeing widespread resistance to biocides in hospitals such as is the case with antibiotics?
- 2) Have bacteria become more tolerant to biocides with constant exposure?
- 3) What are the resistance mechanisms (Phenotypic and Genotypic) to biocides in bacteria?
- 4) Is there a link between biocide resistance and antibiotic resistance?
- 5) Does the current level of biocide resistance matter?

4

General biocide resistance mechanisms

are more resistant to biocides.

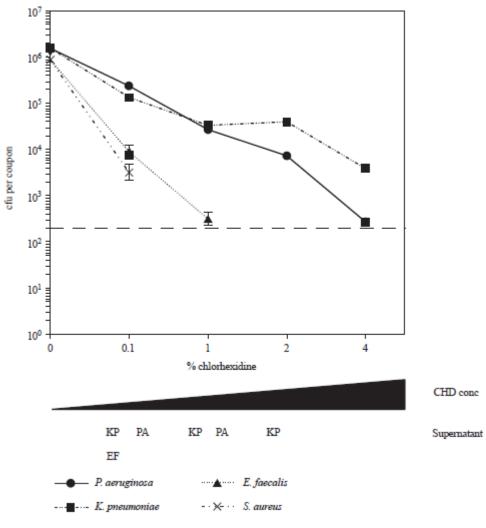

Chlorhexidine is less effective against Gram-negative biofilms

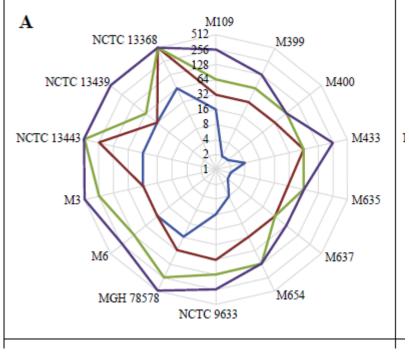
Table I

Chlorhexidine gluconate MIC/MBC/MBEC values (mg/L) for the four strains used in the mixed-species biofilm reactor

Organism	Strain	MIC	MBC	MBEC	Biofilm
Pseudomonas aeruginosa	PAO1	8	64	>512	+++
Klebsiella pneumoniae	NCTC 13368	16-32	32	>512	++
Enterococcus faecalis	NCTC 775	2	4	16	+++
Staphylococcus aureus	ATCC 9144	⊴0.5	1	8	+

MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; MBEC, minimum biofilm eradication concentration.

Touzel et al, 2016 J. Hosp Infect 92:154-60


Klebsiella has become more tolerant to chlorhexidine over time.

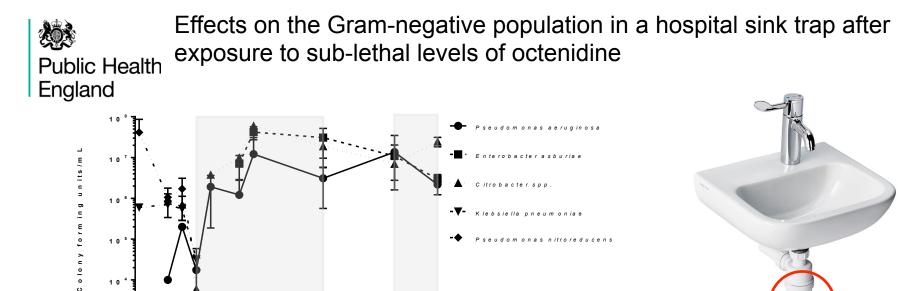
Murray

Modern

Bock et al, 2016 J. Hosp Infect 93:42-8

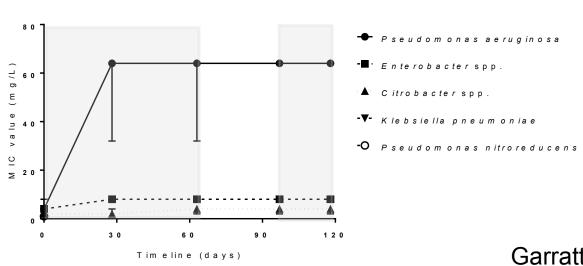
Wand *et al*, 2015 *Antimicrob Agents Chemother* **59**:3966-72

Adaptation to chlorhexidine leads to acquisition of colistin resistance


Strain	CHD	CHD +	BCl	Oct	HDPCM	EtOH (%)	CST	CST +	AZM	FEP	TEC
		CCCP						CCCP			
M109 WT	8	0.5-1	16	4	4-8	3.125	2	2	8-16	0.06-0.125	>64
M109 CA	32-64 ^a	0.5-1	8-16	2-4	4-8	6.25	2-4	0.5-1	8-16	0.06-0.125	>64
NCTC 13439 WT	8-16	2-4	16	2-4	16	6.25	4	2	32	>64	>64
NCTC 13439 CA	256 ^a	1-2	16	2-4	8-16	6.25	>64ª	1	32	>64	>64
M3 WT	8-16	1-2	8-16	2-4	8	6.25	2-4	2	16-32	>64	>64
M3 CA	32-64 ^a	0.5-2	8-16	2-4	8-16	3.125	>64ª	1-2	8-16	>64	>64
NCTC 13443 WT	8-16	1-2	8-16	4	8-16	3.125	2	2	64	>64	>64
NCTC 13443 CA	256-512 ^a	1-2	8-16	2	8-16	3.125	>64ª	2	16-32	>64	>64
NCTC 13368 WT	32	2-4	32	4-8	32-64	6.25	2-4	2-4	64	64	>64
NCTC 13368 CA	256 ^a	1-2	16	4-8	16	6.25	>64ª	2-4	64	64	>64
MGH 78578 WT	8-16	1-2	8-16	4	8-16	6.25	2-4	2-4	32	>64	>64
MGH 78578 CA	256-512ª	0.5-2	8-16	4	8	3.125	>64ª	1-2	32-64	0.5ª	>64

^a ≥ 4-fold increase or decrease in MIC for chlorhexidine-adapted strains (CA) relative to non-adapted strains (WT)

Wand et al, 2017 Antimicrob Agents Chemother, e01162-16


Summary of Genotypic/Phenotypic attributes for chlorhexidine-adapted strains

	Mu	tations	Phenotype			
Strain	phoP/Q	pmrK upregulation	CST Res	Virulence		
NCTC 13368	Y98C (PhoP)	18	Increased	Loss of virulence		
MGH 78578	L348Q (PhoQ)	24	Increased	Loss of virulence		
M109	No change	-	No change	Loss of virulence		
NCTC 13439	No change	12	Increased	No loss of virulence		
М3	E28K (PhoP)	64	Increased	No loss of virulence		
NCTC 13443	A20P (PhoQ)	26	Increased Loss of virule			

120

as nitroreducens

90

Garratt et al, 2020 submitted

10 5

10

10³ -30

0

30

Tim eline (days)

60

Organism	Increase in Octenidine Res	Biocide Cross- Resistance	Antibiotic Cross- Resistance	Growth	Virulence	Important Genes
P. aeruginosa	Yes (>4-fold)	No	No	WT	WT	<i>smvA</i> PA3458-PA3461
Enterobacter spp.	Slight (2- fold)	Yes (multiple biocides)	Yes (ciprofloxacin)	WT	WT	smvA malT <mark>ramR</mark> torA
Citrobacter spp.	Slight (2- fold)	No	Yes (Select β- Lactams, ciprofloxacin	Retardation	Loss of virulence	<i>marR</i> <i>ramR</i> torS envZ

MarR, RamR – regulators of the MDR efflux pump AcrAB-TolC

Conclusions

- 1) Organisms, in a biofilm, are more resistant to chlorhexidine, survival is above clinical concentrations
- 2) Modern clinical strains of *K. pneumoniae* appear to be more intrinsically resistant to chlorhexidine (Murray verses Modern strains)
- 3) Adaptation to chlorhexidine selects for cross-resistance to colistin through overexpression of *pmrK*
- 4) Exposure to continuous sub-lethal levels of disinfectant selects for particular species
- 5) Certain strains have increased resistance to antibiotics through mutations in efflux pump regulators.

Acknowledgements

Dr Lucy Bock Dr Laura Bonney **Dr Mark Sutton** Dr Ginny Moore Miss Isobel Garratt Miss Rebecca Touzel GIA for funding

