

PRESENTATION OVERVIEW

- Introduction
- Why Anaesthetic Gasses?
- Benchmarking information
- Recommendations
- What can I do?
- Extra resources

INTRODUCTION

Healthcare organisations have a responsibility to reduce their impact on climate change just like other industries.

The health sector can reduce environmental impacts whilst improving quality of care.

Reducing carbon emissions can also contribute to improving health in communities and staff.

The sector makes up an estimated 5% of the European carbon emissions and has a significant role to play in contributing to the European 2030 climate and energy targets.

Anaesthetic gases are potent greenhouse gases: comparing with energy use (measured in many acute hospitals) anaesthetic gases are an additional 15% of carbon equivalent emissions.

WHY ANAESTHETIC GASES?

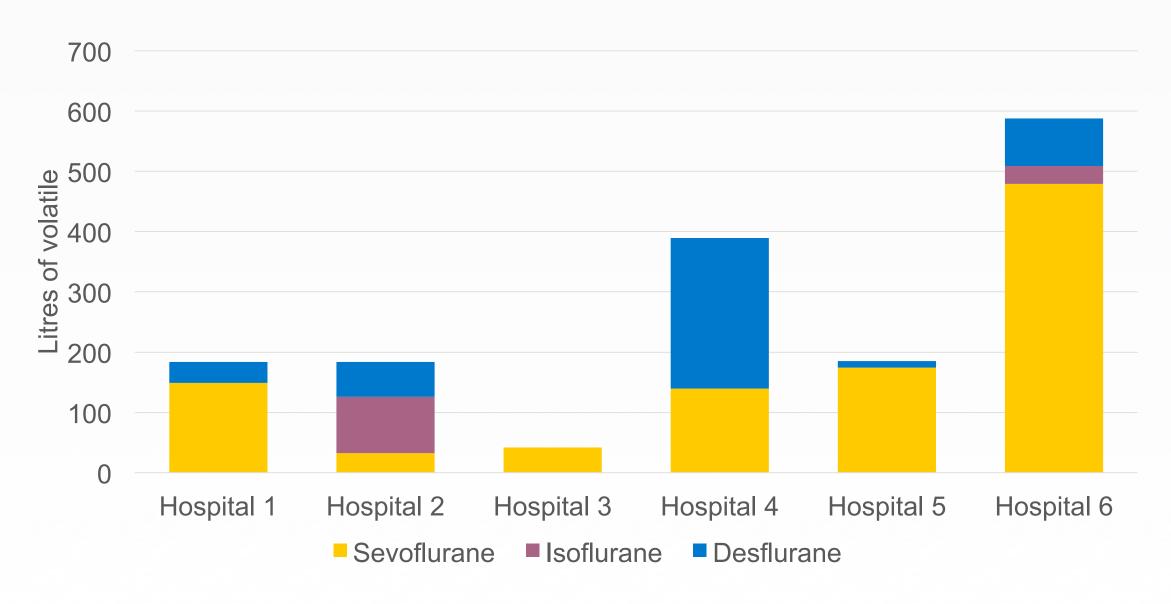
$$N \equiv \stackrel{t}{N} - O^- \longleftrightarrow {}^-N = \stackrel{t}{N} = O$$

Sevoflurane - GWP 130 Bottle (250ml) 49 kg CO₂e

Isoflurane - GWP 510 Bottle (250 ml)191 kg CO₂e

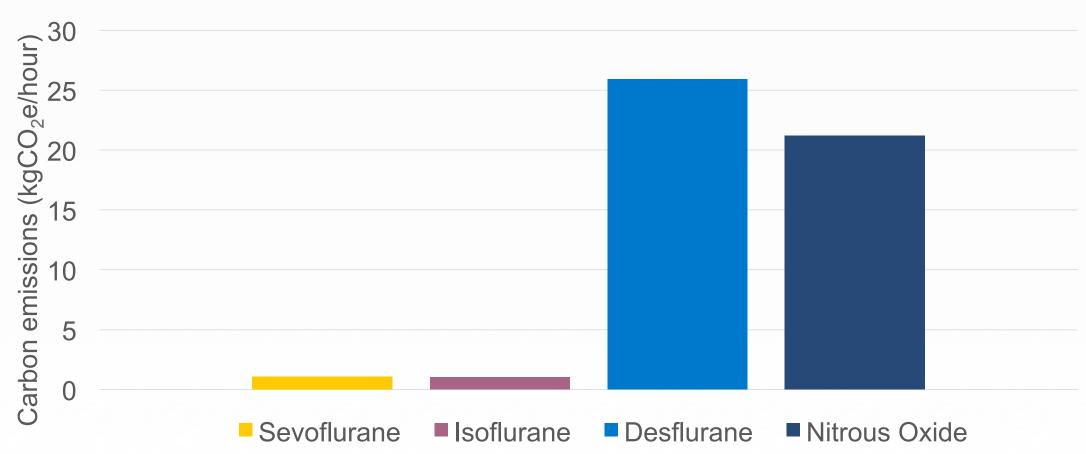
Desflurane - GWP 2540 Bottle (240 ml) 893 kg CO₂e

Nitrous oxide - GWP 298 Cylinder (3.4 kg) 1013 kg CO₂e


RELATIVE POTENCY OF ANAESTHETIC GASES

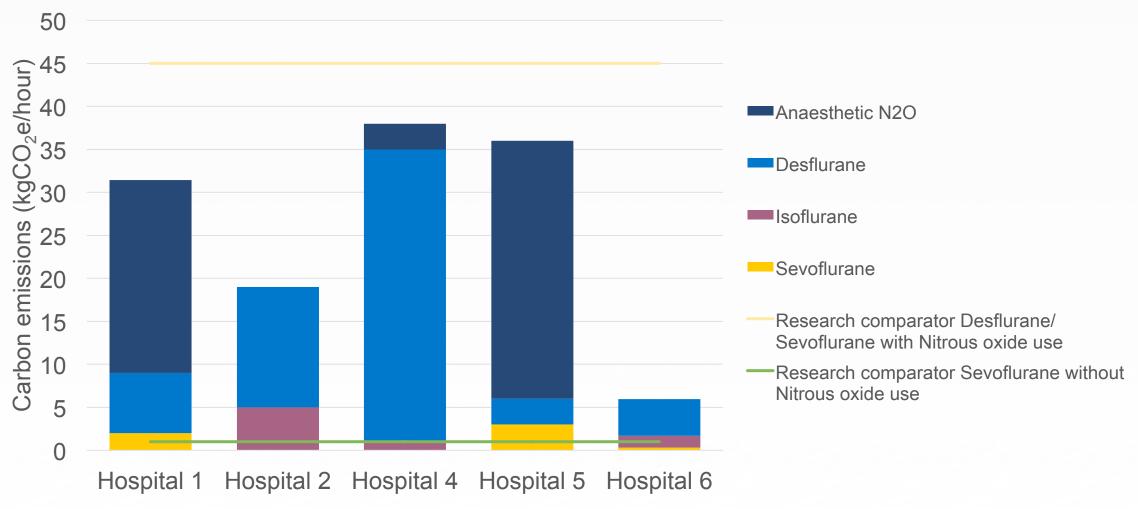
	IR absorption range (µm)	Tropospheric lifetime (yr)	GWP 100	Standard container	kg CO ₂ e for container	Amount needed (MAC ₄₀)	Relative CO ₂ e (per MAC ₄₀)
Sevoflurane	7-10	1.1	130	250ml	49	1.8	1
Isoflurane	7.5-9.5	3.2	510	250ml	191	1.2	2.6
Desflurane	7.5-9.5	14	2540	240ml	893	6.6	72
Nitrous oxide	4.5, 7.6, 12.5	110	298	Cylinder size G	5066	104	132

References:


Lifetimes calculated from JPL http://jpldataeval.jpl.nasa.gov
GWP 100 from Sulbaek Andersen 2012 http://dx.doi.org/10.1021/jp2077598
MAC₄₀ from Tom Pierce, Environmental Advisor to the Royal College of Anaesthetists, UK

ANAESTHETIC GASES VOLUMES FROM EUKI PROJECT

ANAESTHETIC CARBON EMISSIONS PER HOUR


Research comparator carbon emissions per hour of anaesthesia

Ref: Research comparator carbon emissions from anaesthesia: https://journals.lww.com/anesthesia-analgesia/fulltext/2012/05000/Life Cycle Greenhouse Gas Emissions of Anesthetic.25.aspx

ANAESTHETIC GASES BENCHMARKING RESULTS

Ref: Research comparator carbon emissions from anaesthesia: https://journals.lww.com/anesthesia-analgesia/fulltext/2012/05000/Life Cycle Greenhouse Gas Emissions of Anesthetic.25.aspx

SUSTAINABLE ANAESTHETIC PRACTICE

- The key messages for anaesthetic practice are:
 - 1) Whenever possible use Sevoflurane and only use Desflurane when clinically necessary.
 - 2) Reduce or eliminate the use of nitrous oxide during surgery.
 - 3) Reduce flow rates and train in the use of Closed Circuit Anaesthesia which confers clinical benefits as well as saving costs and reducing carbon emissions.
 - 4) Consider the use of intravenous and regional anaesthesia whenever possible.

ANAESTHETIC GASES POTENTIAL SAVINGS

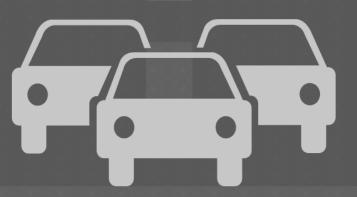
- Estimate of potential carbon savings on implementing changes in anaesthetic practice
- 20% of potential savings and 40% of potential savings would be achievable
- 40% of potential savings would be equivalent to an average of 3% reduction in building energy use for these four hospitals
- 393 tCO₂e is 3 million km in a new car
- Equivalent to 166 cars off the road for these four hospitals (assuming average of 20 thousand km per year)
- If half of European hospitals had similar savings this would be 700 kilotonnes of carbon dioxide savings equivalent to 300,000 cars off the road

Tonnes of CO ₂ e	Hospital 1	Hospital 2	Hospital 4	Hospital 5	Grand Total
20% of potential					
savings	90	56	169	77	393
40% of potential					
savings	180	75	339	155	749
Potential savings as a					
proportion of energy					
emissions	4%	0%	17%	8%	3%

Whenever possible use Sevoflurane; only use Desflurane when clinically necessary

Global Warming Potential (GWP) is standardised to $CO_2 = 1$

Sevoflurane GWP = 130

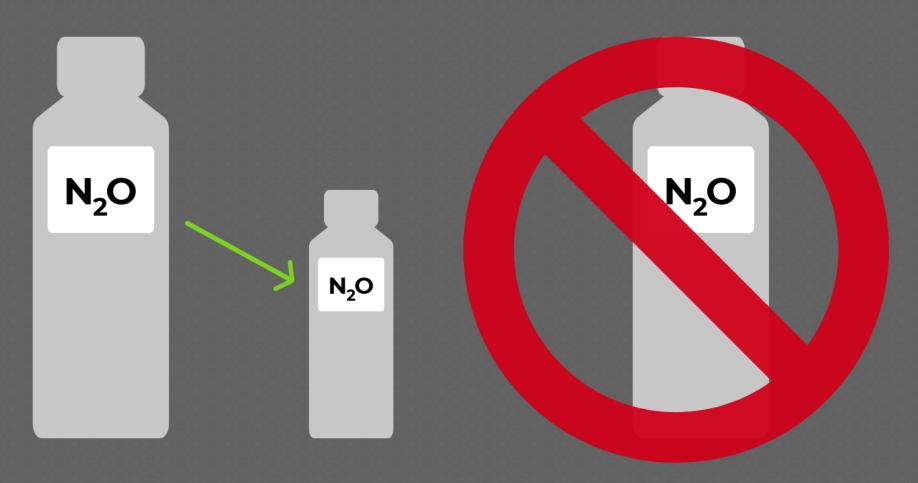

Desflurane GWP = 2540

Saving a conservative 40% of potential CO₂e savings from anaesthetic gases for four hospitals would be equivalent to 166 fewer cars on the road

Scaling this up to half of Europe's hospitals could equate to 300 000 cars

Reduce flow rates through training in closed circuit anaesthesia (CCA)

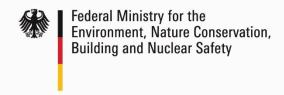
Closed circuit anaesthesia reduces CO₂e emissions, and can also benefit patients



Consider the use of intravenous and regional anaesthesia when possible

Reduce or eliminate the use of nitrous oxide in anesthesia

RESEARCH FOR SUSTAINABLE ANAESTHESIA


Recommendations for further project research:

- 1) Research anaesthetic practice for more hospitals across Europe
- 2) Research into the change for these six hospitals in 1 year
- 3) Further exploration of benchmarking possibilities
- 4) Tighten the current definitions to make them more robust
- 5) Monitoring changes over time 3-5 years

HCWH Europe gratefully acknowledges the financial support of the European Commission's LIFE+ programme, the European Climate Initiative (EUKI), and the Federal Ministry for the Environment, Nature, Conservation, Building and Nuclear Safety (BMUB).

HCWH Europe is solely responsible for the content of this presentation and related materials - the views expressed do not reflect the official views of the European Commission, EUKI, or BMUB.

Extra Resources:

Healthcare Without Harm, Hippocrates carbon footprinting tool: http://www.greenhospitals.net/hippocrates/

GHG Protocol, Accounting Standard, scopes (available in various languages): http://www.ghgprotocol.org/corporate-standard

Sustainable Development Unit for the NHS, public health and social care system in England, Carbon Hotspots - breakdown of carbon footprint for different types of health services:

https://www.sduhealth.org.uk/policy-strategy/reporting/hcs-carbon-footprint/carbon-hotspots.aspx

Sustainable Development Unit for the NHS, public health and social care system in England, Detailed carbon footprint methods paper - detailed methods for calculating energy, travel, goods and services carbon footprint https://www.sduhealth.org.uk/documents/resources/Carbon Footprint carbon emissions 2008 r2009.pdf

Sustainable Development Unit for the NHS, public health and social care system in England, Wedges - which show the level of change needed to reduce emissions for energy, travel, goods and services https://www.sduhealth.org.uk/policy-strategy/reporting/hcs-carbon-footprint/wedges.aspx

Sustainable Development Unit for the NHS, public health and social care system in England, Marginal Abatement Cost curve (MACC) - for investment and return in finances and carbon

https://www.sduhealth.org.uk/policy-strategy/engagement-resources/fnancial-value-of-sustainable-development.aspx