

Reducing the carbon footprint of anaesthetic gasses

Dr JMT Pierce Environment and Sustainability Advisor Royal College of Anaesthetists (UK)

University Hospital Southampton, UK

Overview

- Review of anaesthesia
- Atmospheric science
- Review of the agents used for inhalational anaesthesia
- Tools that might help reduce the CO₂e
- Systems and processes

Overview of anaesthesia

RCOA Royal College of Anaesthetists

Practical components of anaesthesia

Sedation analgesia and relaxation

Practical components of anaesthesia

Maintenance of homeostasis Vascular access Monitoring

Cardiovascular and respiratory control Temperature control

Fate of all of these components

- Disposables
 - Combustion
- Intravenous drugs
 - Metabolised
 - Unused residue combusted
- Packaging
 - Recycled

Combustion of 1kg paper 2.1-2.6 kg CO₂

- Inhalational agents
 - Exhaled into the atmosphere unchanged

Combustion of 1 kg PVC produces 3 kg CO₂

Inhalational anaesthetic agents

Sevoflurane

GWP 130 Bottle (250ml) 44kg CO_2e

Isoflurane GWP 510 Bottle (250 ml)190 kg CO₂e

Desflurane GWP 2540 Bottle (240 ml) 886 kg CO₂e

Nitrous oxide GWP 310 Cylinder (3.4 kg) 1054 kg CO₂e

Inhalational anaesthetic agents

	IR absorption range (µm)	Tropospheric lifetime (yr)	GWP 100	CO ₂ e Kg (container)	MAC ₄₀
Sevoflurane	7-10 µm	1.1	130	44 (250ml)	1.8
Isoflurane	7.5-9.5µm	3.2	510	190 (250ml)	1.2
Desflurane	7.5-9.5 µm	14	2540	886 (240ml)	6.6
Nitrous oxide	4.5, 7.6, 12.5 μm	110	310	1054 (size E)	104

Sulbaek Andersen et al Anesth and Analg 2012; 114: 1081-5 Br J Anaesth 2010; 105: 760-6

Atmospheric concentration of inhalational anaesthetic agents

Vollmer et al 2015

Atmospheric concentrations of major GHGs

Atmospheric concentration HFC-134a

HFCs in the atmosphere, concentrations emissions and impacts. Montzka SA

Peculiar aspects of inhalational anaesthesia

- Volatile substituted ethers
- Liquids at room temperature
- Vapourised and added to the anaesthetic breathing circuit in a concentration from 1-8%
- Carrier gas mixture is oxygen/air or oxygen/N₂O 30%/70% Depth of an aesthesia depends on the exhaled partial pressure
- (concentration)
- Exhaled unchanged recycled via CO₂ absorber and/or scavenged into the atmosphere
- Most of the CO₂e of procurement is in disposal of the agent

RCQA Royal College of Anaesthetists

ET Isoflurane

Scope for choice in anaesthesia

- General anaesthesia vs regional anaesthesia
- Carrier gas oxygen enriched air or O_2/N_2O
- Inhalational agents
 - The type
 - The fresh gas flow "low flow anaesthesia"
 - Added intravenous analgesics or sedatives

Carbon Footprint update for NHS in England 2012

Appendix 1 – Overview of major changes for the 2012 update

To maintain alignment with the latest methods and information available a number of changes have been included in the 2012 update:

Update	2012 (MtCO ₂ e)	%
Healthcare services commissioned from outside the NHS are now included	2.3	9%
Carbon intensity factors for goods and services updated	0,9	4%
Meter Dose Inhalers (MDIs) now included	1.4	6%
Anaesthetic gases now included	0.6	2%
Total	5.2	21%

Carbon footprint update 2013 Sustainable Development Unit NHS

Working across the NHS, Public Health and Social Care system

Carbon Footprint from Anaesthetic gas use Conclusion

These results give total emissions for anaesthetic gases including Nitrous Oxide of an additional 2.5% (0.56 MtCO₂e) of NHS carbon footprint for England.

The majority of anaesthesia is in an acute setting. This is 5% of organisation footprint of acute organisations¹⁸ (0.56 MtCO₂e of 10.4 MtCO₂e). For acute organisations this is comparable with half the emissions from gas used for building energy use¹⁹ (1.17 MtCO₂e) and would add around 15% to 25% on the building energy use carbon footprint (2.47 MtCO₂e)

Measuring, monitoring and reporting carbon dioxide equivalent emissions, from inhaled anaesthetics, is crucial for reducing emissions.

RCQA Royal College of Anaesthetists

EUROPEAN COMMISSION ENTERPRISE AND INDUSTRY DIRECTORATE-GENERAL

Consumer goods Pharmaceuticals

EudraLex The Rules Governing Medicinal Products in the European Union

Volume 4

Good Manufacturing Practice

Medicinal Products for Human and Veterinary Use

<u>Annex 6</u>

Manufacture of Medicinal Gases

32. Cylinders that have been returned for refilling should be prepared with care in order to minimise the risks of contamination, in line with the procedures defined in the Marketing Authorisation. These procedures, which should include evacuation and/or purging operations, should be validated.

Calculating the CO₂e of anaesthetics

Nitrous oxide cylinders

Cylinder return data

Cylinder volumes and temperature

Cylinders expressed in terms of numbers of litres of uncompressed gas at 15C Universal gas equation number of moles (PV=nRT) MWt N₂0 44; calculate the mass of nitrous oxide GWP = 310

Entonox®

50:50 nitrous oxide : oxygen

Inhalational agents

- Number of bottles x volume x density x GWP

Anaesthetic agent CO₂e calculator

Usage				CO2e				
Agent	Number of bottles issued from pharmacy			CO_2e (Tonnes)	Percent of total CO ₂ e			
Isoflurane		1000	Isoflurane	191	- 6			
Sevoflurane		1000	Sevoflurane	49	2			
Desflurane		100	Desflurane	89	3			
			Anaesthetic N ₂ O	1132	38			
			Portable Equanox N ₂ O	352	12			
			Maternity Manifold Éntonox					
Anaesthetic Nitrous oxide	Number of returned cylinders		N ₂ O	1154	39			
Size E		30	TOTAL	2967	100			
Size F		30						
Size G		200						
Size J		0	CO'	CO2a (Tannas Isoflurane				
Mobile Entrox Nitrous oxide			190.74					
Entonox EA		0	170.74		Sevoflurane			
ENTONOX SIZE CD		10	1153.09					
entonox size d		2	1133.70					
ENTONOX SIZE ED		150						
entonox size ex		200		1132.05	Desflurane			
ENTONOX SIZE F		200						
ENTONOX SIZE HX		4						
			351.73 _/					
Maternity Manifold N2O								
ENTONOX SIZE G		800						

http://www.sduhealth.org.uk/resources/default.aspx?q=anaesthetic+

UHS CO₂e (T) of anaesthetic vapour use

UK medical gas supplier N₂O CO₂e

CO₂e Tonnes

RCQA Royal College of Anaesthetists

Accounting for the change of CO₂e

- Less general anaesthesia and more regional and local anaesthesia
- Move away from nitrous oxide/oxygen to oxygen enriched air
- Low flow anaesthesia
 - Lower fresh gas flow
 - Greater intraoperative recycling of exhaled agents
 - Less wastage
- Still a residual use of nitrous oxide

Annual data

- Way of plotting trends
- Historical data
- Not contemporaneous
- Unlikely that it will change behaviour
- Might provide feedback

Real time CO₂e calculator

- Know the fresh gas flow (litres per min) and the vapouriser setting (%)
- Assume that inhaled agent behaves as ideal gas
- Know the temperature and the GWP of each agent
- Calculate the mass of agent used from the volume
- Mass used x GWP = CO_2e
- Know the unit cost then calculate the cost per hour of the inhalational component of anaesthesia

CO₂e of different forms of anaesthesia

Royal College of Anaesthetists

Sherman, Tunceroglu, Parvatker, Sukumar, Dai , Eckelman

The bigger picture

- Travel for staff and patients
- Devices; single use or reusable?
- HVAC and AGSS
- Plug-in electrical devices
 - Patient warming
- Recycling

The impact of surgery on global climate: a carbon footprinting study of operating theatres in three health systems

Andrea J MacNeill, Robert Lillywhite, Carl J Brown

Summary

Background Climate change is a major global public health priority. The delivery of health-care services generates considerable greenhouse gas emissions. Operating theatres are a resource-intensive subsector of health care, with high energy demands, consumable throughput, and waste volumes. The environmental impacts of these activities are generally accepted as necessary for the provision of quality care, but have not been examined in detail. In this study, we estimate the carbon footprint of operating theatres in hospitals in three health systems.

Methods Surgical suites at three academic quaternary-care hospitals were studied over a 1-year period in Canada (Vancouver General Hospital, VGH), the USA (University of Minnesota Medical Center, UMMC), and the UK (John Radcliffe Hospital, JRH). Greenhouse gas emissions were estimated using primary activity data and applicable emissions factors, and reported according to the Greenhouse Gas Protocol.

Findings Site greenhouse gas evaluations were done between Jan 1 and Dec 31, 2011. The surgical suites studied were found to have annual carbon footprints of 5187936 kg of CO₂ equivalents (CO₂e) at JRH, 4181864 kg of CO₂e at UMMC, and 3218907 kg of CO₂e at VGH. On a per unit area basis, JRH had the lowest carbon intensity at 1702 kg CO₂e/m², compared with 1951 kg CO₂e/m² at VGH and 2284 kg CO₂e/m² at UMMC. Based on case volumes at all three sites, VGH had the lowest carbon intensity per operation at 146 kg CO₂e per case compared with 173 kg CO₂e per case at JRH and 232 kg CO₂e per case at UMMC. Anaesthetic gases and energy consumption were the largest sources of greenhouse gas emissions. Preferential use of desflurane resulted in a ten-fold difference in anaesthetic gas emissions between hospitals. Theatres were found to be three to six times more energy-intense than the hospital as a whole, primarily due to heating, ventilation, and air conditioning requirements. Overall, the carbon footprint of surgery in the three countries studied is estimated to be 9.7 million tonnes of CO₂e per year.

Interpretation Operating theatres are an appreciable source of greenhouse gas emissions. Emissions reduction strategies including avoidance of desflurane and occupancy-based ventilation have the potential to lessen the climate impact of surgical services without compromising patient safety.

CrossMark

Lancet Planet Health 2017; 1: e381–88

See Comment page e357 Division of General Surgery, University of British Columbia, Vancouver, Canada (A J MacNeill MD, Prof C J Brown MD); Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK (A J MacNeill); and School of Life Sciences, University of Wanwick, Warwick, UK (R Lillywhite)

Correspondence to: Dr Andrea J MacNeill, Division of General Surgery, Vancouver General Hospital, 950 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada andrea.macneill@vch.ca

> RCQA Royal College of Anaesthetists

Funding None.

	Volume pu	Volume purchased (L/year)			r)			
	VGH	UMMC	JRH	VGH	UMMC	JRH		
Desflurane	535·7	532·8	0	1983073	1972412	0		
Isoflurane	34.2	176.4	222	26 297	135 636	170314		
Sevoflurane	132	115.5	217	24907	21793	40898		
Total				2 034 277	2129841	211212		

CO₂e calculated using 100-year Global Warming Potential (GWP₁₀₀) values of 2540 for desflurane, 510 for isoflurane, and 130 for sevoflurane.⁸ VGH=Vancouver General Hospital. CO₂e=CO₂ equivalents. UMMC=University of Minnesota Medical Center. JRH=John Radcliffe Hospital.

Table 1: Annual greenhouse gas emissions from volatile anaesthetics

Nitrous oxide use at all three centres minimal

Figure 2: Relative contribution of scopes 1, 2, and 3 to the carbon footprint of operating theatres at (A) Vancouver General Hospital, (B) University of Minnesota Medical Center, and (C) John Radcliffe Hospital Anaesthetic gas=scope 1. Energy=scope 2. Supply chain and waste=scope 3.

An hour's anaesthesia related CO₂e Change in clinical practice from 1985 to 2018

End tidal control

GE Aisys CS²

- Vapour use adjusted to achieve the desired Et_{agent}
- Reduces vapour use
- Displays the cost
- Reduces cost; £51k pa
 - Benefit at 3-4 years
- Values for cost are very similar to those obtained from the free app
- App provides CO₂e

Systems and processes

Protecting resources, promoting value: a doctor's guide to cutting waste in clinical care

Guidelines for the Provision of Anaesthesia Services (GPAS) ACSA Anaesthesia Clinical Services Accreditation Royal College of Anaesthetists ACCREDITATION

Ch**ee**singWisely UK

November 2014

Perioperative Quality Improvement Programme

Operating rooms

- The overall impact of anaesthesia is small on a global scale compared with other GHGs
- ORs 188 T CO₂e per OR per year
- The proportion of the CO₂e of health care delivery attributable to anaesthesia is significant
- Nitrous oxide and desflurane have the highest GWPs
- There is scope for informed choice of practice

Anaesthesia practice

- All forms of anaesthesia require both drugs and disposables
- For general anaesthesia inhalational anaesthesia has a larger CO_2e than total intravenous anaesthesia (TIVA)
- Inhalational anaesthesia low flow anaesthesia should be the standard of practice both financially and environmentally
- Recognise the role of the anaesthesia machine manufacturers
- Reducing or eliminating the use of nitrous oxide is the largest single contribution one can make
- The Impact Calculator quantifies the magnitude of the change in practice
- Need systems and processes in place

Measurement tools

Annual carbon footprint of anaesthetic agents and nitrous oxide

http://www.sduhealth.org.uk/documents/publications/ _carbon_hotspot_anaesthetic_gases_Feb_2014.xlsx

Smart phone app to calculate the real-time CO_2e of inhalational anaesthesia

- iOS search Anesthetic Impact Calculator
 - Sleekwater Software / Kevin Scott
- Android search Anaesthetic Impact Calculator
 - Sleekwater Software / Kevin Scott

Any questions?

	Energy (MWh/year)			CO₂e (kg/ye	ar)			
	VGH	UMMC	JRH	VGH	UMMC	JRH		
Heating	2518	2204	6971	514340	610702	2283426		
Cooling	66	357	1312	1523	195629	787149		
Ventilation	449	1062	2045	10317	581938	1104386		
Lighting*	236	177	313	5423	96 959	169189		
Plug-loads	113	56		2591	30 535			
Total	3382	3856	10641	534194	1515763	4344150		

CO₂e=CO₂ equivalents. VGH=Vancouver General Hospital. UMMC=University of Minnesota Medical Center. JRH=John Radcliffe Hospital. *AtVGH and UMMC, theatre submetering included plug-loads and surgical spotlights, but not overhead lighting; overhead lighting is reported separately based on lighting audits; at JRH, all lighting was captured in theatre submetering, hence only one value is reported for both lighting and plug-loads.

Table 2: Annual operating theatre energy requirements and greenhouse gas emissions

A day's anaesthesia related CO₂e (kg)

Guidelines for the Provision of Anaesthesia Services

- Work with estates to minimise energy use
 - Including AGSS and OR ventilation and lighting
- Reduce resource use
 - Low flow anaesthesia
 - Avoid nitrous oxide within reason
 - Desflurane low flow as a matter of course
 - TIVA
 - Minimise drug and disposable wastage
- Recycling to avoid combustion of waste or landfill

Choosing Wisely

1. **Day surgery** should be considered the default for most surgical procedures (except complex procedures)

2. Patients do **not need to come into hospital the day before surgery** if they have had the appropriate preoperative assessment and preparation

3. Most patients **do not need routine preoperative tests** before minor or intermediate surgery.

4. For many patients the chance of harm after an operation may be reduced if they **improve fitness**, **stop smoking**, **reduce alcohol intake** and in some cases **reduce weight** in the weeks or months before their surgery.

http://www.choosingwisely.co.uk/i-am-a-clinician/recommendations/#1476651640539-f279ec69-9e40

Protecting resources, promoting value: a doctor's guide to cutting waste in clinical care

November 2014

POIP Perioperative Quality Improvement Programme

Drawing Down N₂O

To Protect Climate and the Ozone Layer

A UNEP Synthesis Report

Figure ES.1 Current anthropogenic N₂O emission sources and estimates of their contributions

Ozone Depletion Potential & Global Warming - Balancing ODP vs GWP

INTERNAL PARTY AND A DESCRIPTION OF A DE