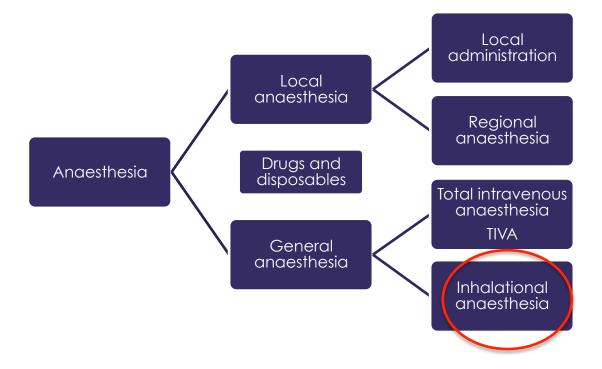


Reducing the carbon footprint of anaesthetic gasses

Dr JMT Pierce Environment and Sustainability Advisor Royal College of Anaesthetists (UK)


University Hospital Southampton, UK

Overview

- Review of anaesthesia
- Atmospheric science
- Review of the agents used for inhalational anaesthesia
- Tools that might help reduce the CO₂e
- Administrative components

Overview of anaesthesia

Practical components of anaesthesia

Sedation analgesia and relaxation

Royal College of Anaesthetists

Practical components of anaesthesia

Maintenance of homeostasis

Vascular access

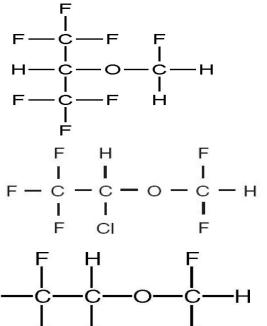
Monitoring

Cardiovascular and respiratory control

Temperature control

Fate of all of these components

- Disposables
 - Combustion


Combustion of 1 kg PVC produces 3 kg CO₂

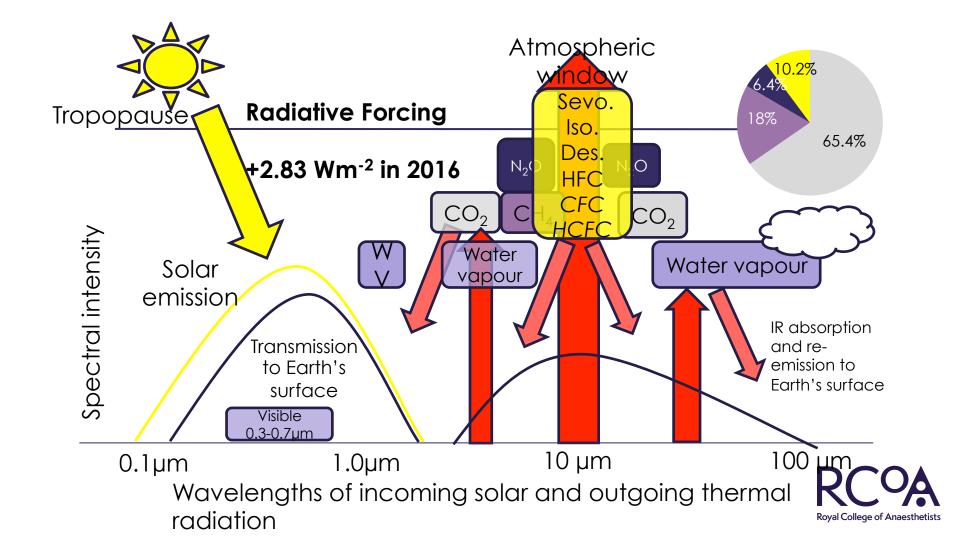
- Intravenous drugs
 - Metabolised
 - Unused residue combusted
- Packaging
 - Recycled
- Inhalational agents
 - Exhaled into the atmosphere unchanged

Combustion of 1kg paper 2.1-2.6 kg CO₂

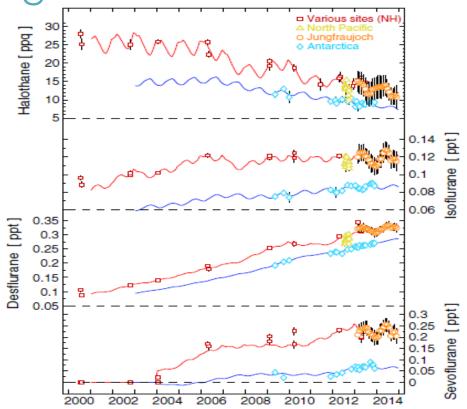
Inhalational anaesthetic agents

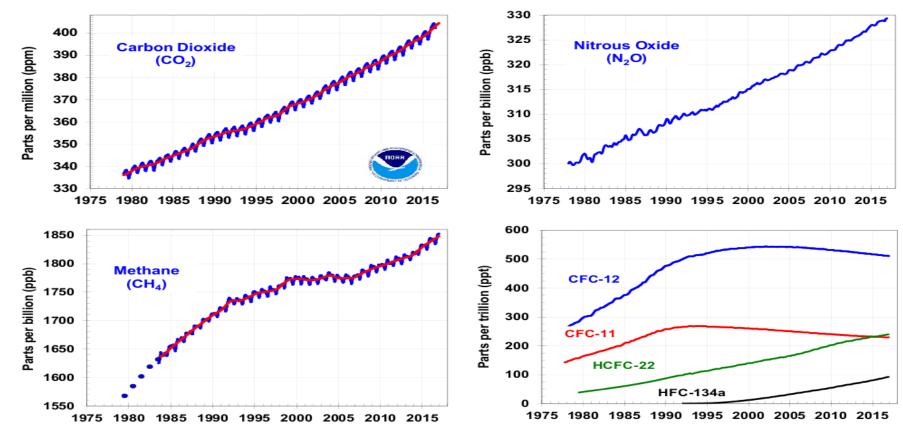
Sevoflurane GWP 130

Bottle (250ml) 44kg CO₂e


Isoflurane GWP 510 Bottle (250 ml)190 kg CO₂e

Desflurane GWP 2540 Bottle (240 ml) 886 kg CO₂e


Nitrous oxide GWP 310 Cylinder (3.4 kg) 1054 kg CO_2e



Atmospheric concentration of inhalational anaesthetic agents

Atmospheric concentrations of major GHGs

Inhalational anaesthetic agents

	IR absorption range (µm)	Tropospheric lifetime (yr)	GWP ₁₀₀	CO₂e Kg (container)	MAC ₄₀
Sevoflurane	7-10 µm	1.1	130	44 (250ml)	1.8
Isoflurane	7.5-9.5µm	3.2	510	190 (250ml)	1.2
Desflurane	7.5-9.5 µm	14	2540	886 (240ml)	6.6
Nitrous oxide	4.5, 7.6, 12.5 µm	110	310	1054 (size E)	104

Peculiar aspects of inhalational anaesthesia

Volatile substituted ethers

Liquids at room temperature

Vapourised and added to the anaesthetic breathing circuit in a concentration from 1-8%

Carrier gas mixture is oxygen/air or oxygen/N₂O 30%/70%

Depth of anaesthesia depends on the exhaled partial pressure (concentration)

Exhaled unchanged recycled via CO₂ absorber and/or scavenged into the atmosphere

Most of the CO₂e of procurement is in disposal of the agent

Royal College of Anaesthetists

ET Isoflurane

Fresh gas flow Patient gas supply

Scope for choice in anaesthesia

- General anaesthesia vs regional anaesthesia
- Carrier gas oxygen enriched air or O₂/N₂O
- Inhalational agents
 - The type
 - The fresh gas flow "low flow anaesthesia"
 - Added intravenous analgesics or sedatives

Royal College of Anaesthetists

Carbon Footprint update for NHS in England 2012

Appendix 1 – Overview of major changes for the 2012 update

To maintain alignment with the latest methods and information available a number of changes have been included in the 2012 update:

Update	2012 (MtCO ₂ e)	%
Healthcare services commissioned from outside the NHS are now included	2.3	9%
Carbon intensity factors for goods and services updated	0.9	4%
Meter Dose Inhalers (MDIs) now included	1.4	6%
Anaesthetic gases now included	0.6	2%
Total	5.2	21%

Carbon Footprint from Anaesthetic gas use

Conclusion

These results give total emissions for anaesthetic gases including Nitrous Oxide of an additional 2.5% (0.56 MtCO₂e) of NHS carbon footprint for England.

The majority of anaesthesia is in an acute setting. This is 5% of organisation footprint of cute organisations 18 (0.56 MtCO₂e of 10.4 MtCO₂e). For acute organisations this is comparable with half the emissions from gas used for building energy use 19 (1.17 MtCO₂e) and would add around 15% to 25% on the building energy use carbon footprint (2.47 MtCO₂e)

Measuring, monitoring and reporting carbon dioxide equivalent emissions, from inhaled anaesthetics, is crucial for reducing emissions.

EUROPEAN COMMISSION

ENTERPRISE AND INDUSTRY DIRECTORATE-GENERAL

Consumer goods
Pharmaceuticals

EudraLexThe Rules Governing Medicinal Products in the European Union

Volume 4

Good Manufacturing Practice

Medicinal Products for Human and Veterinary Use

Annex 6

Manufacture of Medicinal Gases

32. Cylinders that have been returned for refilling should be prepared with care in order to minimise the risks of contamination, in line with the procedures defined in the Marketing Authorisation. These procedures, which should include evacuation and/or purging operations, should be validated.

Calculating the CO₂e of anaesthetics

Nitrous oxide cylinders

Cylinder return data

Cylinder volumes and temperature

Cylinders expressed in terms of numbers of litres of uncompressed gas at 15C

Universal gas equation number of moles (PV=nRT)

MWt N₂0 44; calculate the mass of nitrous oxide

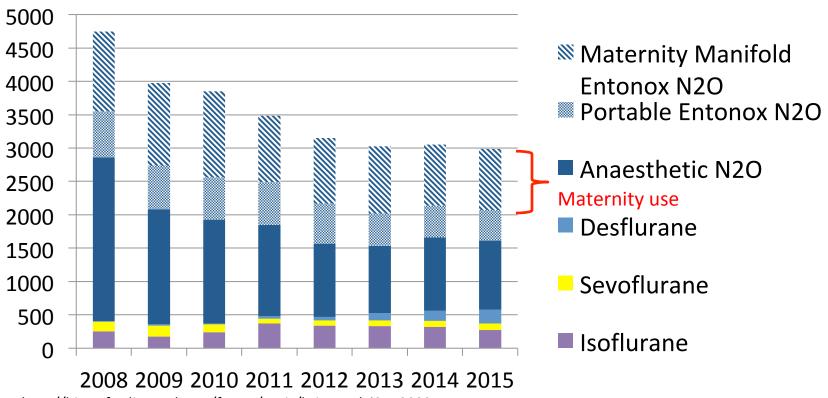
GWP = 310

Entonox®

50:50 nitrous oxide : oxygen

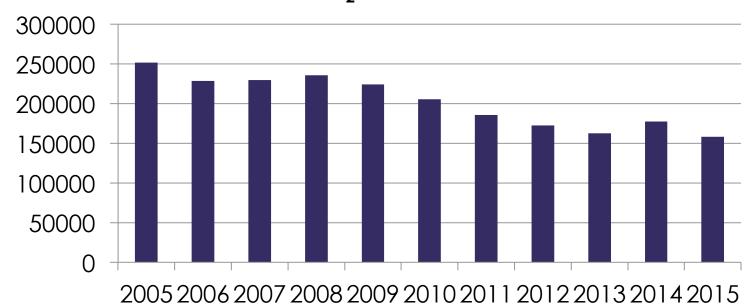
Inhalational agents

Number of bottles x volume x density x GWP



Anaesthetic agent CO₂e calculator

Usage				CO2e			
Agent	Number of bottles issued from pharmacy			CO ₂ e (Tonnes)	Percent of total CO ₂ e		
Isoflurane		1000	Isoflurane	191	- 6		
Sevoflurane		1000	Sevoflurane	49	2		
Desflurane		100	Desflurane	89	3		
			Anaesthetic N ₂ O	1132	38		
			Portable Equanox N ₂ O	352	12		
			Maternity Manifold Éntonox				
Anaesthetic Nitrous oxide	Number of returned cylinders		N ₂ O	1154	39		
Size E		30	TOTAL	2967	100		
Size F		30					
Size G		200					
Size J	CO2e (Tonnes) Isoflurane						
				COZE (TOTTILES)			
Mobile Entnox Nitrous oxide			190.74	1			
Entonox EA		0	170.72	•	Sevoflurane		
ENTONOX SIZE CD		10	1153.98		30101010		
ENTONOX SIZE D		2	1133.70				
ENTONOX SIZE ED		150					
ENTONOX SIZE EX		200		1132.05	Desflurane		
ENTONOX SIZE F		200			20011010110		
entonox size hx		4					
			351.73_/				
Maternity Manifold N2O							
ENTONOX SIZE G		800					


UHS CO₂e (T) of anaesthetic vapour use

http://bja.oxfordjournals.org/forum/topic/brjana_el%3B13932

UK medical gas supplier N₂O CO₂e

CO₂e Tonnes

Accounting for the change of CO₂e

Less general anaesthesia and more regional and local anaesthesia

Move away from nitrous oxide/oxygen to oxygen enriched air

Low flow anaesthesia

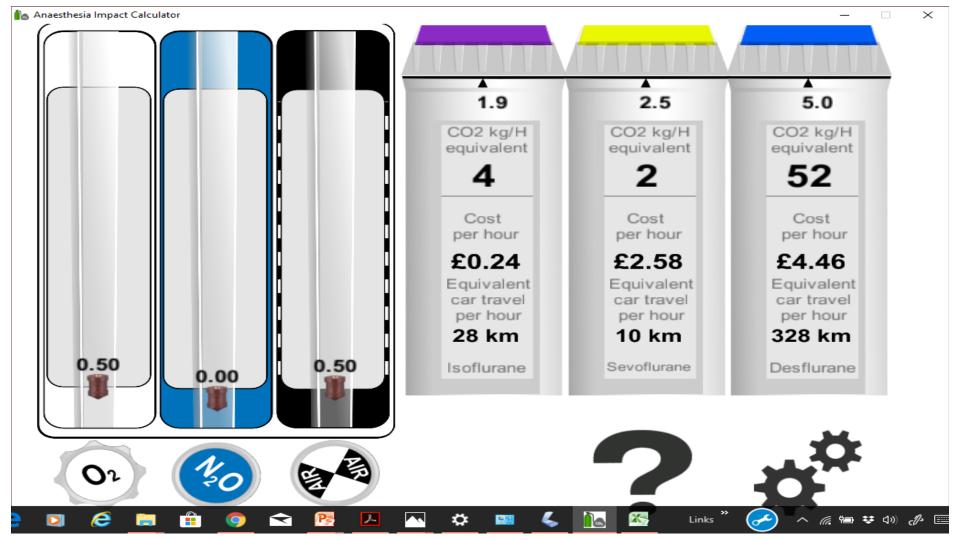
Lower fresh gas flow

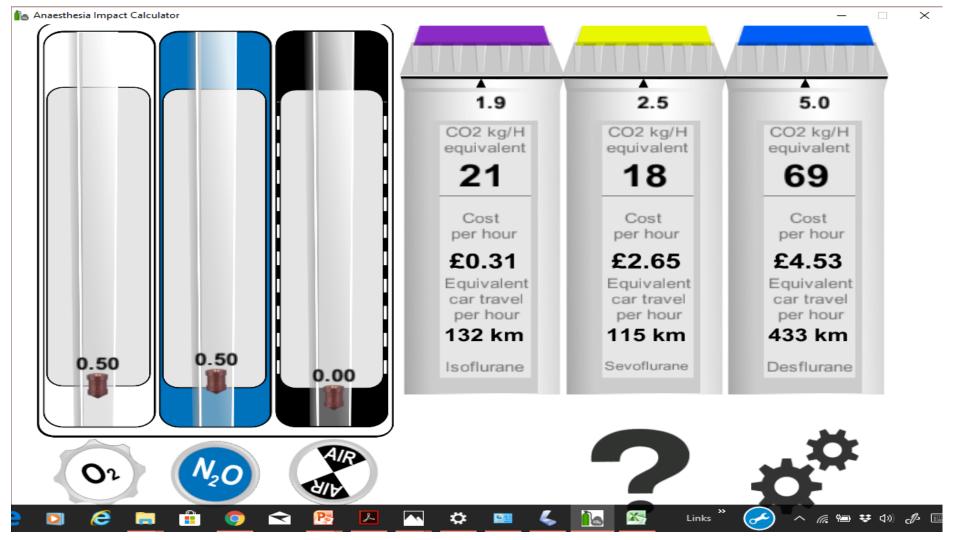
Greater intraoperative recycling of exhaled agents

Less wastage

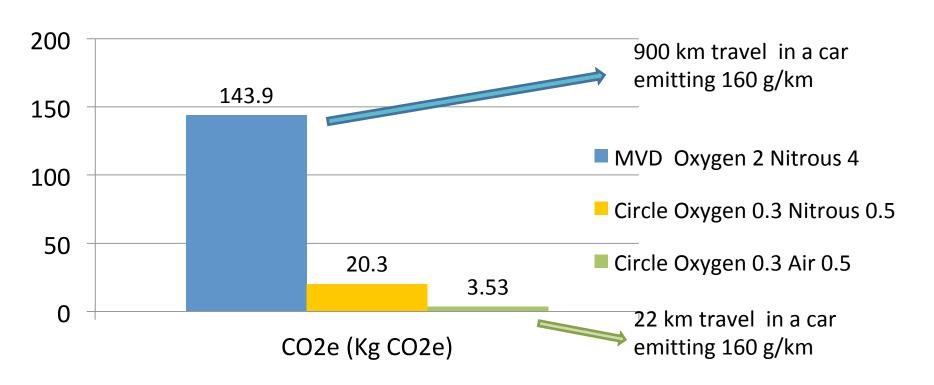
Still a residual use of nitrous oxide

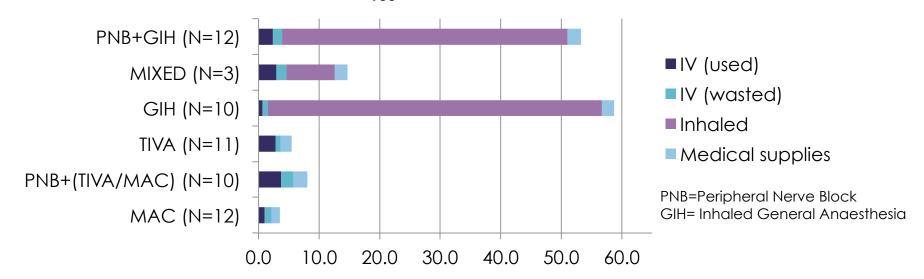
Annual data


- Way of plotting trends
- Historical data
- Not contemporaneous
- Unlikely that it will change behaviour



Real time CO₂e calculator

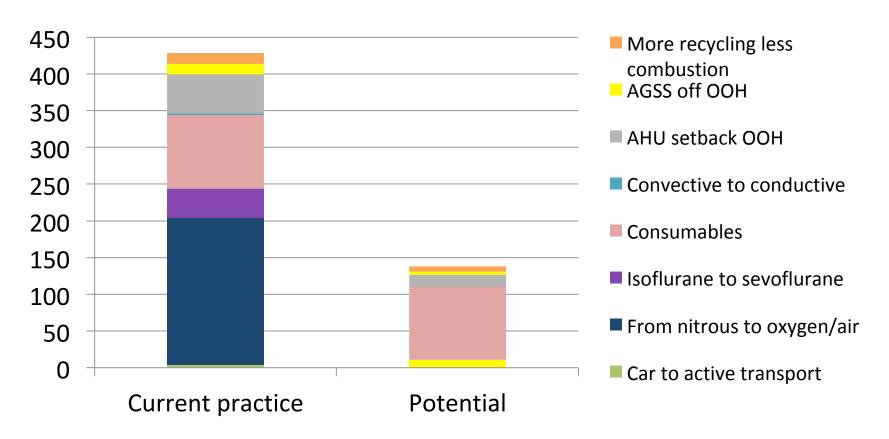

- Know the fresh gas flow (litres per min) and the vapouriser setting (%)
- Assume that inhaled agent behaves as ideal gas
- Know the temperature and the GWP of each agent
- Calculate the mass of agent used from the volume
- Mass used x GWP = CO_2e
- Know the unit cost then calculate the cost per hour of the inhalational component of anaesthesia



An hour's CO₂e Minute volume divider in 1985 to circle with absorber 2017

CO₂e of different forms of anaesthesia

IPCC GWP₁₀₀ for Clinical Pathways



The bigger picture

- Travel for staff and patients
- Devices; single use or reusable?
- Use of energy and electricity
- Keeping patients warm in the operating room
- Recycling

A day's anaesthesia related CO₂e (kg)

End tidal control

GE Aisys CS²

- Vapour use adjusted to achieve the desired Et_{agent}
- Reduces vapour use
- Displays the cost
- Reduces cost; £51k pa
 - Benefit at 3-4 years
- Values for cost are very similar to those obtained from the free app
- App provides CO₂e

Administrative components

Protecting resources, promoting value: a doctor's guide to cutting waste in clinical care

November 2014

Perioperative Quality Improvement Programme

Guidelines for the Provision of Anaesthesia Services

- Work with estates to minimise energy use
 - Including AGSS and OR ventilation and lighting
- Reduce resource use
 - Low flow anaesthesia
 - Avoid nitrous oxide within reason
 - Desflurane low flow as a matter of course
 - TIVA
 - Minimise drug and disposable wastage
- Recycling to avoid combustion of waste or landfill

Choosing Wisely

- 1. **Day surgery** should be considered the default for most surgical procedures (except complex procedures)
- 2. Patients do **not need to come into hospital the day before surgery** if they have had the appropriate preoperative assessment and preparation
- 3. Most patients do not need routine preoperative tests before minor or intermediate surgery.
- 4. For many patients the chance of harm after an operation may be reduced if they **improve fitness**, **stop smoking**, **reduce alcohol intake** and in some cases **reduce weight** in the weeks or months before their surgery.

Summary

- The overall impact of anaesthesia is small on a global scale compared with other GHGs
- The proportion of the CO₂e health care delivery attributable to anaesthesia is significant
- There is scope for informed choices of practice
- Reducing or eliminating the use of nitrous oxide is the largest single contribution one can make
- The Impact Calculator can help with those choices
- Need systems and processes in place

Measurement tools

Annual carbon footprint of anaesthetic agents and nitrous oxide

```
http://www.sduhealth.org.uk/documents/publications/
_carbon_hotspot_anaesthetic_gases_Feb_2014.xlsx
```

Smart phone app to calculate the real-time CO₂e of inhalational anaesthesia

- iOS search Anesthetic Impact Calculator
 - Sleekwater Software / Kevin Scott
- Android search Anaesthetic Impact Calculator
 - Sleekwater Software / Kevin Scott

